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Sornette, Johansen, and Bouchaud (1996), Sornette and Johansen (1997), Johansen, Ledoit, and Sornette
(2000) and Sornette (2003a) proposed that, prior to crashes, the mean function of a stock index price time
series is characterized by a power law decorated with log-periodic oscillations, leading to a critical point
that describes the beginning of the market crash. This article reviews the original log-periodic power law
model for financial bubble modeling and discusses early criticism and recent generalizations proposed
to answer these remarks. We show how to fit these models with alternative methodologies, together with
diagnostic tests and graphical tools, to diagnose financial bubbles in the making in real time. An application
of this methodology to the gold bubble which burst in December 2009 is then presented.
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1. Introduction

Detecting a financial bubble and predicting when it will end have become of crucial impor-
tance, given the series of financial bubbles that led to the current ‘Second Great Contraction’,
using the definition given by Reinhart and Rogoff (2009). As noted by Sornette (2009), Sornette
and Woodard (2010), Kaizoji and Sornette (in press), Sornette, Woodard, and Zhou (2009) and
Fantazzini (2010a, 2010b), the global financial crisis that had started in 2007 can be consid-
ered an example of how the bursting of a bubble can be dealt with by creating new bubbles.
This consideration, which is not new in the financial literature (see e.g. Sornette and Woodard
2010 and references therein), was indirectly confirmed by Lou Jiwei, the Chairman of the
$298 billion sovereign wealth fund named China Investment Corporation, which was created
in 2007 with the goal to manage an important part of the People’s Republic of China’s foreign
exchange reserves. On 28 August 2009, Lou told reporters on the sidelines of a forum orga-
nized by the Washington-based Brookings Institution and the Chinese ‘Economists 50 Forum’,
a Beijing think-tank, that ‘both China and America are addressing bubbles by creating more
bubbles and we’re just taking advantage of that. So we can’t lose.’ Moreover, Lou also added
that ‘CIC was building a broad investment portfolio that includes products designed to generate
both alpha and beta; to hedge against both inflation and deflation; and to provide guaranteed
returns in the event of a new crisis’ (see Xin and Zhou Wheatley 2009 for more details). The
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previous comments clearly point out how important it is to have tools able to detect bubbles in
the making.

Unfortunately, there is no consensus in the economic literature on what a bubble is: Gürkay-
nak (2008) surveyed a large set of econometric tests of asset price bubbles and found that for
each paper that finds evidence of bubbles, there is another one that fits the data equally well
without allowing for a bubble, so that it is not possible to distinguish bubbles from time-varying
fundamentals. A similar situation can also be found in the professional literature: for example,
Alan Greenspan stated on 30 August 2002 that ‘. . .We, at the Federal Reserve . . . recognized
that, despite our suspicions, it was very difficult to definitively identify a bubble until after the
fact, that is, when its bursting confirmed its existence.’ (Greenspan 2002) So, is this a lost cause?
Absolutely not.

A model which has quickly gained a lot of attention among financial practitioners and in the
physics academic literature due to the many successful predictions is the so-called log-periodic
power law (LPPL) approach proposed by Sornette, Johansen, and Bouchaud (1996), Sornette
and Johansen (1997), Johansen, Ledoit, and Sornette (2000) and Sornette (2003a, 2003b). The
Johansen–Ledoit–Sornette (JLS) model assumes the presence of two types of agents in the mar-
ket: a group of traders with rational expectations and a second group of so-called noise traders,
that is, irrational agents with herding behavior. The idea of the JLS model comes from statistical
physics and it shares many elements with a model introduced by Ising for explaining ferromag-
netism (see e.g. Goldenfeld 1992). According to this model, traders are organized into networks
and can have only two states: buy or sell. In addition, their trading actions depend on the deci-
sions of other traders and on external influences. Due to these interactions, agents can form
groups with self-similar behavior which can lead the market to a bubble situation, which can
be considered a situation of ‘order’ compared with the ‘disorder’ of normal market conditions.
Another important feature introduced in this model is the positive feedbacks which are gener-
ated by the increasing risk and the agents’ interactions, so that a bubble can be a self-sustained
process.

Many examples of calibrations of financial bubbles with LPPLs were reported by Sornette
(2003a), who suggested that the LPPL model provides a good starting point to detect bub-
bles and forecast their most probable end. Johansen and Sornette (2004) identified the most
extreme cumulative losses (i.e. drawdowns) in a large set of financial assets and showed that they
belong to a probability density distribution, which is distinct from the distribution of the 99%
of the smaller drawdowns which represent the normal market regime. Moreover, they showed
that for two-thirds of these extreme drawdowns, the market prices followed a super-exponential
behavior prior to their occurrences, as confirmed by a calibration of an LPPL model. These
particular drawdowns (or outliers) are called ‘dragon kings’ in Sornette (2009). Interestingly,
this approach allowed to diagnose bubbles ex ante, as shown in a series of real-life tests (see
Zhou and Sornette 2003, 2006, 2008, 2009, Sornette and Zhou 2006, Sornette, Woodard, and
Zhou 2008). Furthermore, it is currently being used at the Financial Crisis Observatory, which
is a scientific platform set up at the ETH – Zurich, aimed at ‘testing and quantifying rigor-
ously the hypothesis that financial markets exhibit a degree of inefficiency and a potential for
predictability, especially during regimes when bubbles develop’, (Financial Crisis Observatory
website).

The goal of this article is to present an easy-to-use and self-contained guide for bubble modeling
and detecting with LPPLs, which contains all the sufficient steps to derive the main models in this
growing and interesting field of the literature, and discuss the important aspects for practitioners
and researchers.
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The rest of the paper is organized as follows. Section 2 reviews the original JLS model with
the main steps required for its derivation. Section 3 discusses the early criticism to this approach
and recent generalizations proposed to answer these remarks. Section 4 discusses how to fit
LPPL models, by presenting three estimation methodologies: the original two-step nonlinear
optimization proposed by Johansen, Ledoit, and Sornette (2000), the genetic algorithm (GA)
approach proposed by Jacobsson (2009) and the two-step/three-step maximum-likelihood (ML)
approach proposed by Fantazzini (2010a). Section 5 is devoted to the diagnosis of bubbles in the
making by using a set of different techniques. We describe diagnostic tests based on the LPPL
fitting residuals and diagnostic tests based on rational expectation models with stochastic mean-
reverting termination times, as well as graphical tools useful for capturing bubble development
and for understanding whether a crash is in sight or not. Section 6 presents a detailed empirical
application devoted to the burst of the gold bubble in December 2009, while Section 7 briefly
concludes.

2. The original LPPL model

Johansen, Ledoit, and Sornette (2000) considered an ideal market with no dividends and where
interest rates, risk aversion and market liquidity constraints are ignored. Therefore, the fundamen-
tal value for an asset is p(t) = 0, so any positive value of p(t) represents a bubble. In general, p(t)
can be viewed as the price in excess of the fundamental value of an asset. In this framework, there
are two types of agents: first, a group of rational agents who are identical in their preferences and
characteristics, and so they can be substituted with a single representative agent, and second, a
group of irrational agents whose herding behavior leads to the development of a financial bubble.
When this tendency develops till a certain critical value, a large proportion of agents will then
assume the same short position, thus causing a crash. A financial crash is not a certain event in
this model, but it is characterized by a probability distribution: as a consequence, it is rational for
financial agents to continue investing, because the risk for the crash to happen is compensated by
the positive return generated by the financial bubble and there exists a small probability for the
bubble to disappear smoothly, without the occurrence of a crash.

The key variable to model the price behavior before a crash is the crash hazard rate h(t), that
is, the probability per unit of time that the crash will take place, given that it has not yet occurred.
The hazard rate h(t) quantifies the probability that a great number of agents will assume the same
sell position simultaneously, a position that the market will not be able to satisfy unless the prices
decrease substantially. We remark that a strong collective answer (as it is the case for a crash)
is not necessarily the consequence of one elaborated internal mechanism of global coordination
in this model, but it can appear starting from imitative local micro-interactions, which are then
transmitted by the market resulting in a macroscopic effect. In this regard, Johansen, Ledoit, and
Sornette (2000) first discussed a macroscopic ‘mean field’ approach and then turned to a more
microscopic approach.

2.1 Macroscopic modeling

According to the mean field theory from Statistical Mechanics (Stanley 1971, Goldenfeld 1992),
a simple way for describing an imitative process is to assume that the hazard rate h(t) can be
described by the following equation:

dh

dt
= Chδ , (1)
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where C > 0 is a constant and δ > 1 represents the average number of interactions among traders
minus one. Thus, it follows that an amplification of interactions increases the hazard rate. If we
integrate Equation (1), we have

h(t) =
(

h0

tc − t

)α

, α = 1

δ − 1
, (2)

where tc is the critical time determined by the initial conditions at some origin of time. It can be
shown that the condition δ > 1 (and consequently α > 0) is crucial to obtain a growth of h(t) as
t → tc and, therefore, a critical point in finite time. Moreover, the condition that α < 1 is required
for the price not to diverge at tc. Rewriting these condition for δ, we have that 2 < δ < ∞, that
is, an agent should be connected at least with two agents.

Another important feature of this approach is the possibility of self-fulfilling crisis, which is
a concept recently proposed to explain the recession in the 1990s in seven countries (Argentina,
Indonesia, Hong Kong, Malaysia, Mexico, South Korea and Thailand) (see Krugman 1998, Sor-
nette 2003a). It is suggested that the loss of investors’ confidence caused a self-fulfilling process
in these countries and thus led to severe recessions. This feedback process can be modeled by
using the previous mean field approach:

dh

dt
= Dpμ, μ > 0, (3)

where D is a positive constant. The underlying idea is that the lack of confidence quantified by
the hazard rate increases when the market price departs from its fundamental value. Therefore,
the price has to increase to compensate the increasing risk.

2.2 Microscopic modeling

Johansen, Ledoit, and Sornette (2000) and Sornette (2003a) assumed that the group of irrational
agents are connected into a network. Each agent is indexed by a integer number i = 1, . . . , I
and N(i) represents the number of agents who are directly connected to agent i in the network.
Johansen, Ledoit, and Sornette (2000) assumed that each agent can have only two possible states
si: ‘buy’ (si = +1) or ‘sell’ (si = −1). Johansen, Ledoit, and Sornette (2000) supposed that the
state of agent i is determined by the following Markov process:

si = sign

⎛
⎝K

∑
k∈N(i)

sj + σεi

⎞
⎠ , (4)

where the sign function sign(x) is equal to +1 if x > 0 and to −1 if x < 0, K is a positive constant
and εi is an i.i.d. standard normal random variable. In this model, K governs the tendency of
imitation among traders, while σ governs their idiosyncratic behavior. If K increases, the order
in the network increases as well, while the reverse is true when σ increases. If order wins, the
agents will imitate their close neighbors and their imitation will spread all over the network, thus
causing a crash.1 More specifically and in analogy with the Ising model, there exists a critical
point Kc that determines the separation between the different regimes: when K < Kc, the disorder
reigns and the sensibility to a small global influence is low. When the imitation force K grows
approaching Kc, a hierarchy of groups of agents acting collectively and with the same position is
formed. As a consequence, the market becomes extremely sensitive to small global disturbances.
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Finally, for a larger imitation force so that K > Kc, the tendency of imitation is so intense that
there exists a strong predominance of one state/position among agents.

A physical quantity that represents the degree of a system sensitivity to an external perturbation
(or general global influence) is the so-called susceptibility of the system. This quantity describes
the probability that a large group of agents will have the same state, given the existent external
influences in the network. Let us assume the existence of a term G which measures the global
influence and add it to Equation (4):

si = sign

⎛
⎝K

∑
k∈N(i)

sj + σεi + G

⎞
⎠ . (5)

If we define the average state of the market as M = (1/I)
∑I

i=1 si, for G = 0, we have E[M] =
0 by symmetry. For G > 0, we have M > 0, while for G < 0, M < 0. Thus, it follows that
E[M] × G ≥ 0. The susceptibility of the system is then defined as χ = dE[M]/dG|G=0. In general,
the susceptibility has three possible interpretations: first, it measures the sensitivity of M to a small
change in the global influence. Secondly, it is (a constant times) the variance of M around its zero
expectation, caused by idiosyncratic shocks εi. Finally, if we consider two agents and we force
one to be in a certain state, the impact that our intervention will have on the second agent will be
proportional to the susceptibility.

2.3 Price dynamics and derivation of the JLS model

As anticipated previously, the rational agent considered by Johansen, Ledoit, and Sornette (2000) is
risk neutral and has rational expectations. Thus, the asset price p(t) follows a martingale process,
that is, Et[p(t′)] = p(t), ∀t′ > t, where Et[·] represents the conditional expectation, given all
information available up to time t. In the case of market equilibrium, the previous equality is a
necessary condition for no arbitrage.

Considering that there exists a non-zero probability for the crash to happen, we can define a
jump process j which is equal to zero before crash and one after the occurrence of the crash at time
tc. Since tc is unknown, it is described by a stochastic variable with a probability density function
q(t), a cumulative distribution function Q(t) and a hazard rate given by h(t) = q(t)/[1 − Q(t)],
which is the probability per unit of time of the crash taking place in the next instant, given that
it has not yet occurred. Assuming for simplicity that the price falls during a crash by a fixed
percentage k ∈ (0, 1), the asset price dynamics is given by

dp = μ(t)p(t)dt − kp(t)dj

⇒ E[dp] = μ(t)p(t)dt − kp(t)[P(dj = 0) × (dj = 0) + P(dj = 1) × (dj = 1)]
= μ(t)p(t)dt − kp(t)[0 + h(t)dt] = μ(t)p(t)dt − kp(t)h(t)dt.

(6)

The no-arbitrage condition and rational expectations together imply that E[dp] = 0, so that
μ(t)p(t)dt − kp(t)h(t)dt = 0, which yields μ(t) = kh(t). Substituting the last equality into
Equation (6), we obtain the differential equation defining the price dynamics before the occurrence
of the crash given by d(ln p(t)) = kh(t), whose solution is

ln

[
p(t)

p(t0)

]
= κ

∫ t

t0

h(t′) dt′. (7)
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The idea is that the higher the probability of the crash is, the faster the price should grow to
compensate investors for the increased risk of a crash in the market (see also Blanchard 1979). At
this point, Johansen, Ledoit, and Sornette (2000) employed the result that a system of variables
close to a critical point can be described by a power law and the susceptibility of the system
diverges as follows:

χ ≈ A(Kc − K)−γ , (8)

where A is a positive constant and γ > 0 is called the critical exponent of the susceptibility (equal
to 7/4 for the two-dimensional Ising model). Unfortunately, the two-dimensional Ising model
considers only investors interconnected in an uniform way, while in real markets, some agents
can be more connected than others. Modern financial markets are constituted by a collection of
interacting investors, which differ substantially in size, going from the individual investors until
the large pension funds. Furthermore, all investors in the world are organized inside a network
(family, friends, work, etc.), within which they locally influence each other. A more appropriate
representation for the current structure of financial markets is given by a hierarchical diamond
lattice, which was used by Johansen, Ledoit, and Sornette (2000) to develop a model of rational
imitation. This structure can be described as follows: first, consider two agents linked to each
other, so that we have one link and two agents. Secondly, substitute this link with four new links
forming a diamond: the two original agents are now situated in the two diametrically opposite
vertices, whereas the two other vertices are occupied by two new traders. Thirdly, for each one
of these four links, substitute them with four new links, forming a diamond in the same way. If
we repeat this operation an arbitrary number of times, we will get a hierarchical diamond lattice.
As a result, after n iterations, there will be N = (2/3) ∗ (2 + 4n) agents and L = 4n links among
them. For example, the last generated agents will have only two links and the initial agents will
have 2n neighbors, while the others will have an intermediate number of neighbors in between. A
version of this model was solved by Derrida, De Seze, and Itzykson (1983). The basic properties
are similar to those of the rational imitation model using the bi-dimensional network. The only
crucial difference is that the critical exponent γ of the susceptibility in Equation (8) can be a
complex number. Therefore, the general solution is given by

χ ≈ Re[A0(Kc − K)−γ + A1(Kc − K)−γ+iω + · · · ]
≈ A′

0(Kc − K)−γ + A′
1(Kc − K)−γ cos[ω ln(Kc − K) + ψ] + · · · ,

(9)

where A0, A1 and ω are real numbers and Re[·] represents the real part of a complex number.
The power law in Equation (9) is now corrected by oscillations called ‘log-periodic’, because
they are periodic in the logarithm of the variable (Kc − K), and ω/2 is their log frequency.
These oscillations are accelerating since their frequency explodes as it reaches the critical time.
Considering this mechanism, Johansen, Ledoit, and Sornette (2000) assumed that the crash hazard
rates behave in a similar way to the susceptibility in the neighborhood of a critical point. Therefore,
using Equation (9) and considering a hierarchical lattice for the financial market, the hazard rate
has the following behavior:

h(t) ≈ B0(tc − t)−α + B1(tc − t)−α cos[ω ln(tc − t) + ψ ′]. (10)

This behavior of the hazard rate shows that the risk of a crash per unit of time, given that it has
not yet occurred, increases drastically when the interactions among investors become sufficiently
strong. However, this acceleration is interrupted and superimposed with an accelerating sequence
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of phases where the risk decreases, which is represented by the log-periodic oscillations.Applying
Equation (10) to Equation (7), we get the following evolution for the asset price before a crash:

ln[p(t)] ≈ ln[p(c)] − κ

β
{B0(tc − t)β + B1(tc − t)β cos[ω ln(tc − t) + φ]}, (11)

which can be rewritten in a more suitable form for fitting a financial time series as follows:

ln[p(t)] ≈ A + B(tc − t)β{1 + C cos[ω ln(tc − t) + φ]}, (12)

where A > 0 is the value of [ln p(tc)] at the critical time, B < 0 is the increase in [ln p(t)] over
the time unit before the crash if C were to be close to zero, C �= 0 is the proportional magnitude
of the oscillations around the exponential growth, 0 < β < 1 should be positive to ensure a finite
price at the critical time tc of the bubble and quantifies the power law acceleration of prices, and
ω is the frequency of the oscillations during the bubble, while 0 < φ < 2π is a phase parameter.
Expression (12), which is known as the LPPL, is the fundamental equation that describes the
temporal growth of prices before a crash and it has been proposed in different forms in various
papers (e.g. Sornette 2003a, Lin, Ren, and Sornette 2009 and references therein). We remark
that A, B, C and φ are just units distributions of betas and omegas, as described in Sornette and
Johansen (2001) and Johansen (2003), and do not carry any structural information.

3. Criticism and recent generalizations

3.1 Criticism

The most important and detailed criticism against the LPPL approach was put forward by Chang
and Feigenbaum (2006), who tested the mechanism underlying the LPPL using Bayesian methods
applied to the time series of returns (see also Laloux et al. 1999 for additional criticism and the reply
given by Johansen 2002). By comparing marginal likelihoods, they showed that a null hypothesis
model without log-periodical structure outperforms the JLS model.And if the JLS model was true,
they found that parameter estimates obtained by curve fitting have a small posterior probability.
As a consequence, they suggested to abandon the class of models in which the LPPL structure
is revealed through the expected return trajectory. These problems are due to the fact that the
JLS model considers a deterministic time-varying drift decorated by a non-stationary stochastic
random walk component: the latter component has a variance which increases over time, so that
the deterministic trajectory moves away from the observable price path and model estimation
with prices is no more consistent. Therefore, Chang and Feigenbaum (2006) considered the time
series of returns instead of prices and resorted to Bayesian methods to simplify the analysis of a
complicated time-series model like the JLS model (see Bernardo and Smith 1994 or Koop 2003
for an introduction to Bayesian theory). The benchmark model in Chang and Feigenbaum (2006)
is represented by the Black-Scholes model, whose logarithmic returns are given by

ri ∼ N(μ(ti − ti−1), σ
2(ti − ti−1)), (13)

where ri = qi − qi−1 and qi is the log of the price. The drift μ is drawn from the prior distribution
N(μr , σr), while the variance σ 2 is specified in terms of its inverse τ = 1/σ 2, known as the
precision, which is higher the more precisely the random variable is known. The precision is
drawn from the prior distribution τ ∼ �(ατ , βτ ). The alternative hypothesis model proposed by
Chang and Feigenbaum (2006) is the LPPL model with a constant drift μ in the mean function
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(which was not included in the original JLS model):

ri ∼ N(μ(ti − ti−1) + �Hi,i−1, σ 2(ti − ti−1)),

where �Hi,i−1 = B(tc − ti−1)
β

[
1 + C√

1 + (ω/β)2
cos(ω ln(tc − ti−1) + φ)

]

− B(tc − ti)
β

[
1 + C√

1 + (ω/β)2
cos(ω ln(tc − ti) + φ)

]
.

(14)

The LPPL model is characterized by the parameter vector ξ = (A, B, C, β, ω, φ, tc), and these
parameters are drawn independently from the following prior distributions:

A ∼ N(μA, σA), B ∼ �(αB, βB), C ∼ U(0, 1), β ∼ B(αβ , ββ),

ω ∼ �(αω, βω), φ ∼ U(0, 2π), tc − tN ∼ �(αtc , βtc),

where �, B and U denote the gamma distribution, beta distribution and uniform distribution,
respectively. Given the independence among prior distributions, the prior density for this model
is simply given by the product of all marginal priors, while the probability data density for qi is

f (qi|qi−1, θLPPL; LPPL) =
√

τ

2π(ti − ti−1)
exp

[
−τ(qi − qi−1 − μ(ti − ti−1) − �Hi,i−1)

2

2(ti − ti−1)

]

so that the likelihood function for the observed data Q is given by

f (Q|θLPPL; LPPL) =
N∏

i=1

f (qi|qi−1, θLPPL; LPPL).

Finally, the log marginal likelihood necessary for the computation of the Bayes factor is given by

L = ln

(∫
�

f (Q|θLPPL; LPPL)ϕ(θLPPL; LPPL) dθLPPL

)
,

which can be computed with Monte-Carlo methods and a large number of sampling values.
By using relatively diffuse priors with large variances in order to encompass the true values

of the parameters, Chang and Feigenbaum (2006) found that the marginal likelihoods remain
basically the same, whether they consider the LPPL specification in the mean function or only
the drift term μ. This result remains robust to a change of prior distributions and they showed that
the null hypothesis outperforms the JLS model in terms of marginal likelihood with different sets
of priors.

Apart from the problem with weakly informative prior densities (see e.g. Bauwens, Lubrano, and
Richard 2000) for a discussion, Lin, Ren, and Sornette (2009) pointed out that the Bayes approach
to hypothesis testing assumes that some kind of ergodicity on a single data sample applies and
that this sample has to be of sufficiently large size (which is not always the case). Clearly, this
has to be tested and is far from being trivial. Furthermore, it is known that LPPL models can have
likelihoods with several local maxima (see Jacobsson 2009) for a recent review, and the Bayes
approach aims to solve this problem by integration, that is, by smoothing. However, for small
to medium sample sizes, the smoothing in the marginal likelihoods can be harmful, particularly
in the case of poor priors, and can decrease the number of local maxima at the price of a loss
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of efficiency. This may explain why the null hypothesis model with no log-periodic components
showed a better result than the LPPL model.

3.2 The generalized LPPL model with mean-reverting residuals

The work by Chang and Feigenbaum (2006) represented the most important challenge to the
original JLS model, and this is why it prompted a response by Sornette and his co-authors in
2009. Lin, Ren, and Sornette (2009) proposed a generalization of the original model which wants
to make the process consistent with direct price calibration. As we have reported in the previous
sections, the original JLS model has a random walk component with increasing variance, which
makes direct estimation with prices inconsistent, as well as causes the lack of power of Bayesian
methods, as shown by Lin, Ren, and Sornette (2009). Instead, the ‘volatility-confined LPPL model’
proposed by Lin, Ren, and Sornette (2009) combines a mean-reverting volatility process together
with a stochastic conditional return which represents the continuous reassessments of investors’
beliefs for future returns. As a consequence, the daily logarithmic returns are no longer described
by a deterministic drift decorated by a Gaussian-distributed white noise, and the expected returns
become stochastic.

Using the standard framework of rational expectations, Lin, Ren, and Sornette (2009) assumed
that the price dynamics during a bubble is governed by the following process:

dI

I
= μ(t)dt + σY dY + σW dW − κdj,

dY = −αYdt + dW ,

where I is the stock price index or the price of a generic asset, W is the standard Wiener process,
μ(t) is a time-varying drift characteristic of a bubble regime and j is equal to zero before the
crash and one afterwards, while κ represents the percentage by which the asset price falls during
a crash. When 0 < α < 1, Y denotes an Ornstein–Uhlenbeck process, so that dY and Y are both
stationary, and the volatility remains bounded till the crash. This property guarantees that direct
estimation with prices is consistent. We remark that if α = 0, we retrieve the original JLS model.
The corresponding model in discrete time is given by

ln Ii+1 − ln Ii = μi + σY (Yi+1 − Yi) + σWεi − κ�ji, (15)

Yi+1 = (1 − α)Yi + εi, εi ∼ N(0, 1). (16)

Using the theory of the stochastic discount factor (SDF), complete markets and no arbitrage, Lin,
Ren, and Sornette (2009) showed that the asset log returns follow this process:

ln Ii+1 = ln Ii + �Hi,i−1 − α(ln Ii − Hi) + ui, (17)

where �Hi,i−1 is given by expression (14) and ui is a Gaussian white noise, while the conditional
probability distribution for the logarithmic returns is given by

ri+1 = ln Ii+1 − ln Ii ∼ N(�Hi+1,i − α(ln Ii − Hi), σ
2
u (ti+1 − ti)). (18)

Differently from the original JLS model, the additional term −α(ln Ii − Hi) ensures that the
log price fluctuates around the LPPL trajectory Ht , thus guaranteeing the consistency of direct
estimation with prices.
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Lin, Ren, and Sornette (2009) remarked that the previous model based on rational expectation
separates rather artificially the noise traders and the rational investors. Moreover, even though
the rational investors cannot make profit on average, rational agents endowed with different
preferences may, in principle, arbitrage the risk-neutral agents. Therefore, assuming that rational
investors have homogeneous preferences is rather restrictive. Nevertheless, Lin, Ren, and Sornette
(2009) showed that the previous results can be obtained by using a complete different approach,
which considers the theory of the so-called behavioral SDF, where the price movements follow
the dynamics of the market sentiment (see Shefrin 2005) for a textbook treatment of the behavioral
approach to asset pricing. We refer to Lin, Ren, and Sornette (2009) for more details about this
alternative approach.

3.3 Other generalizations: the log-periodic AR(1)–GARCH(1,1) model

While the original LPPL specification can model the long-range dynamics of price movements,
nevertheless it is unable to consider the short-term market dynamics, thus showing residual terms
which can be strongly autocorrelated and heteroskedastic. As a consequence, Gazola et al. (2008)
proposed the following AR(1)–GARCH(1,1) log-periodic model:

Ii = A + B(tc − ti)
β + C(tc − ti)

β cos[w ln(tc − ti) + φ] + ui,

ui = ρui−1 + ηi,

ηi = σiεi, εi ∼ N(0, 1),

σ 2
i = α0 + α1η

2
i−1 + α2σ

2
i−1,

(19)

where εi is a standard white noise term satisfying E[εi] = 0 and E[ε2
i ] = 1, whereas the conditional

variance σ 2
i follows a GARCH(1,1) process. Under the normality assumption for the error term

εi, the ML estimator for the parameter vector � = [A, B, C, tc, β, w, φ, ρ, α0, α1, α2] is obtained
through the numerical maximization of the log-likelihood:

ln L(�) = −1

2
(N − 1) ln(2π) − 1

2

N∑
i=2

ln σ 2
i − 1

2

N∑
i=2

η2
i

σ 2
i

. (20)

In order to improve the optimization procedure, each parameter of the log-periodic model (19)
denoted by θ and defined in a restricted interval denoted by [a, b] can be re-parameterized
according to the following monotonic transformation:

θ = b
exp(θ̃)

1 + exp(θ̃)
+ a

(
1 − exp(θ̃)

1 + exp(θ̃)

)
. (21)

This monotonic transformation turns the original estimation problem over a restricted space of
solutions into an unrestricted problem, which eases estimation particularly when poor starting
values are chosen. In this case, the delta method can be used to compute the standard errors of
the estimate. We remind that the delta method is used to compute an estimator for the variance
of functions of estimators and the corresponding confidence bands. Let V̂ [θ̃ ] be the estimated
variance–covariance matrix of θ̃ , then, by using the delta method, a variance–covariance matrix
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376 P. Geraskin and D. Fantazzini

for a general nonlinear transformation g(θ̃) is given by (see Hayashi 2000 for more details)

V̂ [g(θ̃)] = ∂g(θ̃)

∂θ̃ ′ V̂ [θ̃ ]∂g(θ̃)

∂θ̃

′
.

Gazola et al. (2008) used a two-step procedure to choose the starting values for the numerical
maximization of Equation (20):

(1) the starting values for the set of parameters � = [A, B, C, tc, β, w, φ] are retrieved from the
estimation of the original LPPL model (12);

(2) the starting values for the set of parameters [ρ, α0, α1, α2] of the short-term stochastic com-
ponent ui are obtained by estimating an AR(1)–GARCH(1,1) model on the residuals ûi from
the original LPPL model (12).

4. How to fit LPPL models?

Estimating LPPL models, in general, has never been easy due to the frequent presence of many
local minima of the cost function where the minimization algorithm can get trapped. However,
some recent developments have considerably simplified the estimation process.

4.1 The original two-step nonlinear optimization

Johansen, Ledoit, and Sornette (2000) noted that noisy data, relatively small samples and a large
number of parameters make the estimation of LPPL models rather difficult. Therefore, they
proposed to reduce the number of free parameters by slaving the three linear parameters and
computing them from the estimated nonlinear parameters.

More specifically, if we rewrite the original LPPL model as follows:

yi = A + B(tc − ti)
β + C(tc − ti)

β cos(ω ln(tc − ti) + φ) (22)

or more compactly as

yi = A + Bfi + Cgi,

where

yi = ln Ii or Ii, fi = (tc − ti)
β

gi = (tc − ti)
β cos(ω ln(tc − ti) + φ),

then it is straightforward to see that the linear parameters A, B and C can be obtained analytically
by using ordinary least squares:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N∑
i=1

yi

N∑
i=1

yifi

N∑
i=1

yigi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N
N∑

i=1

fi

N∑
i=1

gi

N∑
i=1

fi

N∑
i=1

f 2
i

N∑
i=1

figi

N∑
i=1

gi

N∑
i=1

figi

N∑
i=1

g2
i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝A

B
C

⎞
⎠ . (23)

D
ow

nl
oa

de
d 

by
 [

G
eo

rg
et

ow
n 

U
ni

ve
rs

ity
] 

at
 1

5:
13

 1
5 

Ju
ly

 2
01

3 



The European Journal of Finance 377

We can write the previous system compactly by using matrix notation:

X′y = (X′X)b, where X =
⎛
⎜⎝

1 f1 g1
...

...
...

1 fN gN

⎞
⎟⎠ , b =

⎛
⎝A

B
C

⎞
⎠ (24)

so that

b̂ = (X′X)X′y, (25)

and we have only four free parameters to estimate (see also Jacobsson 2009 for a similar
derivation). We remark that this simplification can also be seen as an example of concentrated
ML.

The estimation procedure consists of two steps:

(1) Use the so-called Taboo search (Cvijović and Klinowski 1995) to find 10 candidate solutions,
where only the cases with B < 0, 0 < β < 1 and tc > ti (if a bubble) are considered (see
also Sornette and Johansen 2001). However, alternative grid searches can also be considered.
Recently, Lin, Ren, and Sornette (2009) have imposed stronger restrictions, by considering
0.1 < β < 0.9 and 6 ≤ ω ≤ 15 so that the log-periodic oscillations are neither too fast (to
avoid fitting noise) nor too slow (otherwise they would provide a contribution to the trend),
and |C| < 1 to ensure that the hazard rate h(t) remains always positive.2

(2) Each of these 10 solutions is then used as the starting value in a Levenberg–Marquardt
nonlinear least squares algorithm. The solution with the minimum sum of squares between
the fitted model and the observations is taken as the final solution.

4.2 Genetic algorithms

The GA is an algorithm inspired by Darwin’s ‘survival of the fittest idea’, and its theory was
developed by John Holland in 1975. The GA is a computer simulation that aims to mimic the
natural selection in biological systems, which is governed by four phases: a selection mechanism,
a breeding mechanism, a mutation mechanism and a culling mechanism. The GA does not require
the computation of any gradient or curvature and it does not need the cost function to be smooth
or continuous.

The use of GA to estimate LPPL models has been proposed by Jacobsson (2009) following the
GA methodology proposed by Gulsten, Smith, and Tate (1995). Similarly Johansen, Ledoit, and
Sornette (2000), Jacobsson (2009) reduced the number of free parameters to four, by ‘slaving’ the
three linear parameters A, B and C, which are computed by using Equation (25). Her procedure
consists of four steps:

(1) Selection mechanism: Generating the initial population. Each member of the ‘financial’ popu-
lation is represented by a vector of the four nonlinear coefficients tc, φ, ω and β. The members
of the initial population are randomly drawn from a uniform distribution with a pre-specified
range, and for each member, the residual sum of squares is calculated. Jacobsson (2009)
considered an initial population of 50 members (i.e. 50 parameter vectors).

(2) Breeding mechanism. The 25 members with the best value of the cost function are selected
from the population to be included in the breeding program. An offspring is then generated
by randomly drawing two parents, without replacement, and taking the arithmetic mean of
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378 P. Geraskin and D. Fantazzini

them. Jacobsson (2009) repeated this procedure 25 times, and each pair of parents is drawn
randomly with replacement, so that one parent can generate an offspring with another parent
(. . .therefore, betrayals are allowed!).

(3) Mutation mechanism. Genetic mutations in nature play a key role in the evolution of a species,
since they may increase its probability of survival, as well as introduce less favorable charac-
teristics. In our framework, mutations perturb the previous solutions to allow new regions of
the search space to be explored, so that premature convergence in local minima can be avoided.

The mutation process is implemented by computing the statistical range (θmax − θmin) for
each parameter in the population. The range for each parameter is then multiplied with a factor
±k, to obtain the perturbation variable ε, which is uniformly distributed over the interval [−k ×
(parameter range), k × (parameter range)]. Jacobsson (2009) considered k = 2. Twenty-five
members are then drawn randomly, without replacement, from the initial population of 50
computed in the first step. Each selected member is then mutated by adding an exclusive vector
of random perturbations for every parameter. Therefore, the mutation mechanism allows to
compensate the problem of an inaccurate guess for the initial intervals in the solution space.

(4) Culling mechanism. Jacobsson (2009) merged the members generated by mutation and breed-
ing into the population, so that a total of 100 solutions is present (50 old, 25 offsprings and 25
mutations). All of the 100 solutions are ranked according to their cost function in ascending
order, and the 50 best solutions are culled and live on into the next generation. The rest is
deleted.

The previous algorithm is then iterated a certain number of times till a desired termination criterion
is met. Similar to the second step of the optimization process used by Johansen, Ledoit, and
Sornette (2000) and described in Section 4.1, Jacobsson (2009) further refined the parameters
estimated with the GA by using them as starting values for the Nelder–Mead simplex method,
also known as the downhill simplex method.

4.3 The two-step/three-step ML approach

Fantazzini (2010a) found that estimating LPPL models for ‘anti-bubbles’ was much easier than
estimating LPPL models for bubbles: an anti-bubble is symmetric to a bubble and represents a
situation when the market peaks at a critical time tc and then decreases following a power law with
decelerating log-periodic oscillations (see Johansen and Sornette 1999; Johansen and Sornette
2000; Zhou and Sornette 2005; Fantazzini 2010b for more details). Furthermore, estimating
models with log prices was much simpler than estimating models with prices in levels, and in the
latter case, a much more careful choice of the starting values had to be made.

In this regard, we have already seen that the original LPPL model has a stochastic random
walk component with increasing variance, so that the deterministic pattern moves away from the
observable price path. Therefore, the idea given by Fantazzini (2010a) is to reverse the original
times series in order to minimize the effect of the non-stationary component during the estimation
process. The same idea can also be of help in the case of models with stationary error terms, like
the one proposed by Lin, Ren, and Sornette (2009): a time series with strongly autocorrelated
error terms is almost undistinguishable from a non-stationary process in small-to-medium-sized
samples (see e.g. Stock 1994; Ng and Perron 2001; Stock and Watson 2002 for a discussion of
this hotly debated issue in the econometric literature). Figure 1 shows a simulated LPPL model
with AR(1) error terms and 1000 observations, as well as its reverse.
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Figure 1. Simulated LPPL with AR(1) error terms and its reverse. Parameters: A = 7.16, B = −0.43,
C = 0.035, β = 0.35, ω = 4.15, φ = 2.07, tc = 9.92, ρ = 0.88, α0 = 0.00007.

The two-step ML approach used in Fantazzini (2010a) to estimate LPPL models for financial
bubbles, also allowing for an AR(1)–GARCH(1,1) model in the error terms as in Equation (19),
is given below:

(1) Reverse the original time series and estimate the LPPL for the case of an anti-bubble by
using the BFGS (Broyden, Fletcher, Goldfarb, Shanno) algorithm, together with a cubic or
quadratic step length method (STEPBT) (see e.g. Dennis and Schnabel 1983).

(2) Keeping fixed the LPPL parameters �̂ = [Â, B̂, Ĉ, t̂c, β̂, ω̂, φ̂] computed in the first stage,
estimate the parameters of the short-term stochastic component [ρ, α0, α1, α2].

In case of poor starting values, or when the bubble has just started forming (Jiang et al. 2010
and Sornette 2003a remarked that a bubble cannot be diagnosed more than one year in advance
of the crash), the numerical computation can be further eased by considering one additional step.
The three-step ML approach used in Fantazzini (2010a) is described below:

(1) Reverse the original time series and then consider the first temporal observation as if it was the
date of the crash, that is, set tc = t1. Estimate the remaining LPPL parameters [A, B, C, β, ω, φ]
for the case of an anti-bubble by using the BFGS (Broyden, Fletcher, Goldfarb, Shanno)
algorithm, together with a cubic or quadratic step length method (STEPBT).

(2) Use the estimated parameters in the previous step as starting values for estimating all the
LPPL parameters by using again the reversed times series.
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(3) Keeping fixed the LPPL parameters �̂ = [Â, B̂, Ĉ, t̂c, β̂, ω̂, φ̂] computed in the second stage,
estimate the parameters of the short-term stochastic component [ρ, α0, α1, α2].

Being a multi-stage estimation process, the asymptotic efficiency is lower than that of the one-
step full ML estimation. However, the dramatic improvement in numerical convergence and the
improved efficiency in small-to-medium-sized samples more than justify the multi-step procedure.
An (unreported) simulation study confirms the benefits of this procedure in small-to-medium data
sets.

5. Diagnosing bubbles in the making

The main method that we have considered so far to detect financial bubbles is by fitting an LPPL
model to a price series. However, in order to reduce the possibility of false alarms, it is good
practice to implement a battery of tests, so that a prediction must pass all tests to be considered
worthy (see e.g. Sornette and Johansen 2001; Jiang et al. 2010).

5.1 Diagnostic tests based on the LPPL fitting residuals

We have seen in Section 3.2 that Lin, Ren, and Sornette (2009) proposed a model for financial bub-
bles where the LPPL fitting residuals follow a mean-reverting Ornstein–Uhlenbeck process. This
implies that the corresponding residuals follow an AR(1) process and we can test this hypothesis
by using unit-root test.

Lin, Ren, and Sornette (2009) used Phillips–Perron and augmented Dickey–Fuller (ADF) unit-
root tests, where the null hypothesis H0 is the presence of a unit root. Unfortunately, a well-known
shortcoming of the previous two unit-root tests is their low power when the underlying data-
generating process is an AR(1) process with a coefficient close to one. Therefore, we suggest
to also consider the test proposed by Kwiatkowski et al. (1992), where the null hypothesis is a
stationary process. Considering the null hypothesis of a stationary process and the alternative of
a unit root allows us to follow a conservative testing strategy: if we reject the null hypothesis, we
can be confident that the series has indeed a unit root; but if the results of the previous two tests
indicate a unit root while the result of the KPSS test indicates a stationary process, one should be
very cautious and opt for the latter result.

The KPSS test is implemented in the most common statistical and econometric software (see
e.g. Griffiths, Hill, and Lim 2008) for applications with Eviews as well as the Eviews User’s Guide
(version 5 or higher) and Pfaff (2008) for a description of unit-root tests in R, together with the
many routines written for Gauss and Matlab, which can be found on the web.

5.2 Diagnostic tests based on rational expectation models with stochastic mean-reverting
termination times

Lin and Sornette (2009) proposed two models of transient bubbles in which their termination dates
occur at some potential critical time t̃c, which follows a stationary process with a unconditional
mean Tc. The main advantage of these models is the possibility of computing the potential critical
time without the need to estimate the complex stochastic differential equation describing the
underlying price dynamics. Interestingly, the rational arbitrageurs discussed in Lin and Sornette
(2009) can detect bubbles, but they cannot make a deterministic forecast because they have
little knowledge about the other arbitrageurs’ beliefs about the process governing the stochastic
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critical time t̃c. The heterogeneity of the rational agents’expectations determines a synchronization
problem among these arbitrageurs, thus allowing the financial bubble to survive till its theoretical
end time (see also Abreu and Brunnermeier 2003 for a similar model). Moreover, the two models
proposed by Lin and Sornette (2009) can be tested and they allow us to diagnose financial bubbles
in the making in real time. Besides, both models highlight the importance of positive feedback,
that is, when a high price pushes even further the demand so that the return and its volatility tend to
be a nonlinear accelerating function of the price. This positive feedback mechanism is quantified
by a unique exponent m, which is larger than 1 (respectively, 2 for the second model) when we
are in a bubble regime.

5.2.1 A test based on a finite-time singularity in the price dynamics with stochastic critical time
The first model proposed by Lin and Sornette (2009) views a bubble as a faster-than-exponential
accelerating stochastic price, which leads to a finite-time singularity in the price dynamics at a
stochastic critical time. They showed in their Proposition 1 that the price dynamics in a bubble
regime follows this process:

p(t) = K(T̃c − t)−β ,

β = 1

m − 1
, K =

(
β

μ

)β

, Tc = β

μ
p−1/β

0 , T̃c = Tc + t̃c,
(26)

where μ is the instantaneous return rate and p0 denotes the price at the start time of the bubble at
t = 0, while the critical time t̃c follows an Ornstein–Uhlenbeck process with zero unconditional
mean (see Lin and Sornette 2009 for the full derivation of the model). The last property provides
that the end of the bubble cannot be forecasted with certainty but it is a stochastic variable, while
the time Tc can be interpreted as the consensus forecast formed by rational arbitrageurs of the
stochastic critical time T̃c. In fact, we have that

E[T̃c] = E[Tc + t̃c] = Tc. (27)

In order to build a diagnostic test for financial bubbles, Lin and Sornette (2009) inverted
Equation (26) to obtain an expression for the critical time series T̃c,i:

T̃c,i(t) = 1

K

1

[p(t)]1/β
+ t, t = ti − 749, . . . , ti, (28)

where T̃c,i is defined over the time window i ending at time ti, and they considered time windows
of 750 trading days that slide with a time step of 25 days from the beginning to the end of the
available financial time series. We remark that p(t) is known, while the parameters K and β have to
be estimated. The previous inversion aims to transform a non-stationary possibly explosive price
process p(t) into what should be a stationary time series T̃c,i in the absence of misspecification.
Therefore, we can then estimate Tc according to Equation (27) by using the arithmetic average of
T̃c,i(t):

Tc,i = 1

750

750∑
i=1

T̃c,i(t) (29)

so that the fluctuations t̃c,i(t) can be computed as

t̃c,i(t) = T̃c,i(t) − Tc,i. (30)

The first test proposed by Lin and Sornette (2009) consists of the following two steps:
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(1) Perform a bivariate grid search over the parameter space of K and β to find the 10 best pairs
(K , β) such that the resulting time series t̃c,i(t) given by Equation (30) rejects a standard unit-
root test of non-stationarity at the 99.5% significance level. Lin and Sornette (2009) employed
the ADF test, but the addition of the KPSS test would be advisable. Needless to say, only a
subset of the windows will reject the null hypothesis of a unit root (for the ADF test) or will
not reject the null of stationarity (for the KPSS test).

(2) If there are time windows for which there are selected pairs (K , β) according to the previous
step, select the pair with the smallest variance for its corresponding time series t̃c,i(t). This
gives the optimal pair K∗

i and β∗
i which provides the closest approximation to a stationary time

series for t̃c,i(t) given by Equation (30). For a given window i, an alarm is declared when

• β∗ > 0, which yields m > 1;
• Tc,i − ti < 750, which implies that the termination time of the bubble is not too far. Lin and

Sornette (2009) also considered two additional alarm levels: Tc,i − ti < 500 and Tc,i − ti <

250.

The idea of the last step is that the closer we are to the end of the financial bubble, the stronger
should be the evidence for the bubble as a faster-than-exponential growth, and the alarms should
be diagnosed repeatedly by several successive windows.

5.2.2 A test based on a finite-time singularity in the momentum price dynamics with stochastic
critical time

The main disadvantage of the previous model is that the price diverges when approaching the
critical time T̃c at the end of the bubble. Therefore, Lin and Sornette (2009) considered a second
model where the price remains always finite and a bubble is a regime characterized by an acceler-
ating momentum ending at a finite-time singularity with a stochastic critical time. They showed
in their Proposition 3 that the log price y(t) = ln p(t) in a bubble regime follows this process:

y(t) = A − B(Tc + t̃c(t) − t)1−β ,

β = 1

m − 1
, Tc = β

μ
x1/β

0 , x0 := x(t = 0), B = 1

1 − β

(
β

μ

)β

, T̃c = Tc + t̃c,
(31)

where μ is the instantaneous return rate, A is a constant and x(t) = dy/dt denotes the effective
price momentum, that is, the instantaneous time derivative of the logarithm of the price, while
the critical time t̃c follows an Ornstein–Uhlenbeck process with zero unconditional mean (see
Lin and Sornette 2009 for the full derivation of this model). In the second model, it is the high
price momentum x which pushes the demand higher, so that the return and its volatility become
nonlinear accelerating functions. Instead, in the first model, it is the price that provides a positive
feedback on future prices, rather than the price momentum.

Using a procedure similar to Equation (28) to transform a non-stationary possibly explosive
log-price process y(t) into a stationary time series T̃c,i, Lin and Sornette (2009) inverted Equation
(31) to obtain an expression for the critical time series T̃c,i:

T̃c,i(t) =
(

A − ln p(t)

B

)1/(1−β)

+ t, t = ti − 899, . . . , ti, (32)

where T̃c,i is defined over the time window i ending at time ti, and they considered time windows
of 900 trading days that slide with a time step of 25 days from the beginning to the end of the
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available financial time series. We can then estimate Tc,i according to Equation (29) by computing
the arithmetic average of T̃c,i(t) (with 750 replaced by 900), whereas the fluctuations t̃c,i(t) around
Tc,i can be computed by using Equation (30). Similar to the first model, we remark that p(t) is
known, while the parameters A, B and β have to be estimated.

The second test proposed by Lin and Sornette (2009) consists of the following two steps:

(1) Perform a trivariate grid search over the parameter space of A, B and β to find the 10 best
triplets (A, B, β) such that the resulting time series t̃c,i(t) given by Equation (30) rejects a
standard unit-root test of non-stationarity at the 99.5% significance level. Lin and Sornette
(2009) employed the ADF test, but again the addition of the KPSS test would be advisable.

(2) If there are time windows for which there are selected triplets (A, B, β) according to the
previous step, select the pair with the smallest variance for its corresponding time series
t̃c,i(t). This gives the optimal triplet A∗

i , B∗
i and β∗

i which provides the closest approximation
to a stationary time series for t̃c,i(t) given by Equation (30). For a given window i, an alarm
is declared when

• 0 < β∗
i < 0, which yields m > 2 and is called level 1 filter. Lin and Sornette (2009) also

considered two additional alarm levels: m > 2.5 (level 2) and m > 3 (level 3);
• −25 ≤ Tc,i − ti ≤ 50.

The stronger upper bound on Tc,i − ti stems from the fact that the finite-time singularity in the
price momentum is a weaker singularity which can only be observed only close to the critical
time. The lower bound of −25 days is due to the fact that the analysis is performed in sliding
windows with a time step of 25 days. Using a data set covering the last 30 years of the SP500
index, the NASDAQ composite index and the Hong Kong Hang Seng index, Lin and Sornette
(2009) found that the second diagnostic method was more reliable and with fewer false alarms
than the first method analyzed in Section 5.2.1.

5.3 Graphical tools: the crash lock-in plot

Fantazzini (2010a) proposed a graphical tool that proved to be useful to track the development
of a bubble and to understand whether a possible crash is in sight or at least a bubble deflation.
The idea is to plot on the horizontal axis the date of the last observation in the estimation sample
and on the vertical axis the estimated crash date t̂c computed by fitting the LPPL to the data:
if a change in the stock market regime is approaching, then the recursively estimated t̂c should

Figure 2. CLIPs for the SP500 and Shanghai composite index.
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stabilize around a constant value close to the critical time. Fantazzini (2010a) called such a plot
the crash lock-in plot (CLIP).

This idea can be easily justified theoretically by resorting to the models proposed by Lin and
Sornette (2009), in which the critical time T̃c follows an Ornstein–Uhlenbeck process.

We report in Figure 2 the CLIPs for the Chinese Shanghai Composite Index in July 2009, a
case which was analyzed in detail in Bastiaensen et al. (2009) and Jiang et al. (2010), and for the
SP500 in July 2007, with these being the peak of the market in the decade. We used data spanning
from the global minima till one day before the market peak.

6. An application: the burst of the gold bubble in December 2009

The gold market peaked on 2 December 2009, hitting the record high at $1216.75 an ounce in
Europe, and then started falling on 4 December 2009, losing more than 10% in two weeks. The
main concerns cited to be behind this bubble were the future prospects for a weak dollar as well
as inflationary fears (see e.g. Mogi 2009; White 2009). However, there were also some worried
calls about the possibility of a gold bubble: the prestigious magazine Fortune wrote on 12 October
2009 that ‘. . .Signs of gold fever are everywhere. . .’ but ‘. . .amid the buying frenzy and after a
decade-long run-up that has seen the price quadruple, is gold still a smart investment? The simple
answer: Wherever the price of gold is headed in the long term, several market watchers say the
fundamentals indicate that gold is poised to fall’ (Cendrowski 2009). Interestingly, on the day the
gold price peaked, that is, 2 December 2009, Hu Xiaolian, a vice-governor at the People’s Bank
of China, told reporters in Taipei that ‘. . .gold prices are currently high and markets should be
careful of a potential asset bubble forming. . .’, see the original report by Tung (2009). The gold
price, starting from 12 November 2008 (which represents the global minima over a three-year
span) till the end of January 2010 is reported in Figure 3. This figure also reports the ‘Search
Volume Index’ by Google Trends, which computes how many searches have been done for the
term ‘Gold Price’ on Google over time.3

The ‘Search Volume Index’ is an interesting tool because it allows us to get some insights as
to when the bubble started: looking at Figure 3, we can see that a massive interest around gold
started to build during the year 2008, just before the price minima in November 2008. Therefore,
we expect that a possible LPPL model can be fitted using data starting from the year 2008.

6.1 LPPL fitting with varying window sizes

Jiang et al. (2010) tested the stability of LPPL estimation parameters by varying the size of the
estimation samples and adopting the strategy of fixing one endpoint and varying the other one
(see also Sornette and Johansen 2001). By sampling many intervals as well as by using bootstrap
techniques, they obtained probabilistic predictions on the time intervals in which a given bubble
may end and lead to a new market regime (which may not necessarily be a crash, but also a
transition to a plateau or a slower decay). Following their example, we fit the logarithm of the
gold price by using the LPPL Equation (22) in shrinking windows and in expanding windows.
The shrinking windows have a fixed end date t2 = 1 December 2009, while the starting date t1
increases from 12 November 2008 to 17 August 2009 in steps of 5 (trading) days. The expanding
windows have a fixed starting date t1 = 12 November 2008, while the end date t2 increases from
17 August 2009 to 1 December 2009 in steps of 5 (trading) days.

Given the stochastic nature of the initial parameter selection and the noisy nature of the under-
lying generating processes, we employed four estimation algorithms: the original Taboo Search
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Figure 3. Gold price and Google search volume index. Time t converted in units of 1 year.

algorithm proposed by Cvijović and Klinowski (1995), the two-step nonlinear optimization pro-
posed by Johansen, Ledoit, and Sornette (2000), and the pure random search (PRS) and the
three-step ML approach proposed by Fantazzini (2010a).4. The estimation results are then filtered
by the following LPPL conditions, which were also used in Jiang et al. (2010) for the case
of Chinese bubbles: t̂c > t2, B < 0 and 0 < β < 1. The selected t̂c are then used to compute the
20%/80% and 5%/95% quantile range of values of the crash dates, which are reported in Figure 4:
the left plot shows the ranges which are obtained by considering the filtered results from all four
estimation methods, whereas the right plot shows the ranges obtained by considering only the
two-step nonlinear optimization and the three-step ML approach.

As expected, the original Taboo Search and the PRS are very inefficient methods compared
with the competing two-step and three-step approaches and deliver very large quantile ranges.
Nevertheless, the two medians t̂c, equal to 11 December 2009 for the left plot and 5 December
2009 for the right plot, are very close to the actual market peak date, which is 2 December 2009
(i.e. 9.9206 when converted in units of one year). Moreover, if we consider only the most efficient
methods, the 20%/80% quantile interval is rather close and precise and diagnoses that the critical
time tc for the end of the bubble and the change of market regime lies in the time sample 3
December 2009–11 December 2009 (the market started to fall on 4 December 2009).

6.2 Diagnostic tests based on the LPPL fitting residuals

We discussed in Section 3.2 that Lin, Ren, and Sornette (2009) proposed a model for financial
bubbles where the LPPL fitting residuals follow a mean-reverting Ornstein–Uhlenbeck process.
Therefore, the corresponding residuals should follow a stationary AR(1) process and this hypoth-
esis can be tested by using unit-root tests. We employed ADF and KPSS tests: a rejection of the
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Quantile ranges of the crash date: P.R.S. /
taboo search / 2-step taboo s. NONL. OPT. / 3-step ML

Quantile ranges of the crash date: 
2-step taboo s. NONL. OPT. / 3-step ML

Figure 4. Quantile ranges of the crash date.

null hypothesis in the first test, together with a failure to reject the null in the second test, indicates
that the residuals are stationary and thus compatible with an O–U process.

We used the residuals resulting from the previous estimation windows and numerical algorithms,
that is, 48 shrinking windows, 19 expanding windows and four estimation methods, which give
a total of 268 calibrations. The fraction PLPPL of these different windows that met the LPPL
conditions was equal to PLPPL = 60.1%. The conditional probability that, out of the fraction PLPPL

of windows that satisfied the LPPL conditions, the null hypothesis of non-stationarity was rejected
for the residuals was equal to PStat.Res.|LPPL = 100% when using the ADF test at the probability
level α = 0.001. As for the KPSS test, the null of stationarity was not rejected at the 10% level
or higher in all cases which satisfied the LPPL conditions. Therefore, this empirical evidence is
comparable with the results reported by Jiang et al. (2010) for the case of the 2005–2007 and
2008–2009 Chinese stock market bubbles.

6.3 Diagnostic tests based on rational expectation models with stochastic mean-reverting
termination times

We employed the two diagnostics proposed by Lin and Sornette (2009) to detect the presence
of a bubble (and reviewed in Section 5.2) in the gold price time series, from 12 November 2008
to 1 December 2009. As discussed previously, we considered both the ADF and KPSS unit-root
tests. Moreover, we also used time windows of 500 and 250 trading days to compute the critical
time series T̃c,i in Equations (28)–(29) and Equation (32), together with the original 750 trading
days for the first diagnostic and 900 for the second one. The rationale for this choice is that a
long time span may include data which are not observed during a bubble regime but during a
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Alarms 2nd diagnostic (ADF tests, 900 trading days)

Alarms 2nd diagnostic (KPSS tests, 900 trading days) Alarms 2nd diagnostic (KPSS tests, 500 trading days) Alarms 2nd diagnostic (KPSS tests, 250 trading days)

Alarms 2nd diagnostic (ADF tests, 500 trading days) Alarms 2nd diagnostic (ADF tests, 250 trading days)

Figure 5. Logarithm of the gold price and corresponding alarms as vertical lines indicating the ends of the
windows of T trading days, in which the second diagnostic flags an alarm for the presence of a bubble. The
value of the exponent m for each alarm is reported in the legend.

standard geometric Brownian motion regime (or other regimes). Of course, reducing the time
window implies a loss of efficiency.

Interestingly, the first procedure did not flag any alarm for the presence of a bubble, whereas
the second one flagged three series of alarms close to three important price falls (Figure 5): the
first group of alarms was centered around the local market peak on 20 February 2009 when gold
reached the value of $995.3 an ounce, very close to the important psychological barrier of $1000,
and after two days, it started falling, losing more than 10% in two weeks. The second group of
alarms was centered around the local market peak on 2 June 2009 when gold reached the value
of $982.9, and after two days, it started falling, losing more than 5% in a week. Finally, the third
group of alarms was centered around the global market peak on 2 December 2009 when gold
reached the value of $1216 an ounce.

This empirical evidence seems to suggest that the KPSS test provides more precise alarms than
the ADF test, which is not a surprise, given the well-known limitations of the latter test. Moreover,
a time window of 250 observations delivers more reliable flags for the presence of a bubble (or
imminent price falls) than longer time spans, with it being more robust to market regime changes.
However, a time window of 900 observations still provides useful information.

6.4 CLIPs for the gold bubble

The CLIP plots on the horizontal axis the date of the last observation in the estimation sample
and on the vertical axis the estimated crash date t̂c computed by fitting the LPPL to the data.
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Figure 6. CLIPs for the gold price series. The three vertical lines correspond to the two local market peaks
on 20 December 2009 and 2 June 2009 and to the global market peak on 2 December 2009, respectively.

Following the previous empirical evidence as well as the one reported in Lin and Sornette (2009)
and Fantazzini (2010a), we computed the CLIP by fitting the data with two rolling estimation
windows of 900 and 250 days and by using the simple average of the estimated t̂c resulting from
the four estimation algorithms discussed in Section 6.1. We used data spanning from 12 November
2008 till 1 day before the global market peak on 2 December 2009. The two CLIPs are shown in
Figure 6.

Not surprisingly, the indications provided by the two CLIPs are rather similar to those provided
by the second diagnostic test proposed by Lin and Sornette (2009) discussed in the previous
section: the recursive forecasted crash dates computed with time windows of 250 trading days
stabilize around three constant values which are very close to the dates corresponding to the
two local market peaks on 20 February 2009 and 2 June 2009 and to the global market peak
on 2 December 2009. The indications from the second CLIP computed with time windows of
900 trading days are somewhat weaker, but confirm the previous alarms. As expected, the esti-
mates computed with smaller time spans are more noisy than those computed with longer time
spans.

7. Conclusions

We presented an easy-to-use and self-contained guide for modeling and detecting financial bubbles
with LPPLs, which contains the sufficient steps to derive the main models and discusses the
important aspects for practitioners and researchers. We reviewed the original JLS model and we
discussed early criticism to this approach and recent generalizations proposed to answer these
remarks. Moreover, we described three different estimation methodologies which can be employed
to estimate LPPL models. We then examined the issue of diagnosing bubbles in the making by
using a set of different techniques, that is, by considering diagnostic tests based on the LPPL
fitting residuals and diagnostic tests based on rational expectation models with stochastic mean-
reverting termination times, as well as graphical tools useful for capturing bubble development
and for understanding whether a crash is in sight or not. We finally presented a detailed empirical
application devoted to the burst of the gold bubble in December 2009, which highlighted how a
series of different diagnostics flagged an alarm for the presence of a bubble before prices started
to fall.
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Notes

1. In the context of the alignment of atomic spins to create magnetization, this model represented by Equation (4) is
identical to the so-called two-dimensional Ising model which was solved explicitly by Onsager (1944), and where
the disorder parameter is represented by the temperature of the system.

2. The lower bound on ω is rather strong, given that Sornette (2003a) found that ω = 6.36 ± 1.56 by using a large
collection of empirical evidence. Moreover, the recent work about Chinese market bubbles by Jiang et al. (2010)
considers only the former set of conditions.

3. See http://www.google.com/intl/en/trends/about.html for more details. In this case, the time span starts from 2004,
which is the first year available for this analysis.

4. Similar to Cvijović and Klinowski (1995), we found that GA has a performance in between Taboo Search and PRS.
However, even though PRS is computationally inefficient, it has the benefit to potentially visit regions of the parameter
space that sometimes are not visited by the previous algorithms. This is why we consider it in our analysis in the
place of GA.
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